

Vestibular Vocacionado 2010.2

Caderno de Prova

2ª FASE – 1ª Etapa

ENGENHARIA DE ALIMENTOS

Nome do Candidato:	

INSTRUÇÕES GERAIS

- Confira o Caderno de Prova, as Folhas de Respostas e a Folha de Redação. Em caso de erro, comunique-se com o fiscal.
- Utilize somente caneta esferográfica transparente com tinta na cor azul ou preta.
- **Não** assine as Folhas de Respostas e a de Redação, pois isso identifica o candidato, tendo como consequência a **anulação** da prova.

REDAÇÃO

■ Desenvolva sua dissertação. Se desejar, utilize a folha-rascunho; no entanto, sua dissertação deverá ser transcrita para a Folha de Redação definitiva, com um mínimo de 20 e um máximo de 30 linhas.

PROVA DISCURSIVA

■ Responda às questões discursivas. Se desejar, utilize para cada uma o espaço de rascunho correspondente; no entanto, suas questões deverão ser transcritas para as Folhas de Respostas definitivas, observando a numeração correspondente a cada questão.

Redação

Com base na informação abaixo, elabore uma dissertação sobre a *Ecologia Industrial* aplicada à indústria de alimentos. Sustente seu ponto de vista com argumentos consistentes.

Em termos gerais, o conceito Ecologia Industrial pode ser entendido como o estudo das interações entre a indústria e os sistemas ecológicos. O desenvolvimento da Ecologia Industrial é uma tentativa de prover um novo conceito para melhor entender os impactos de sistemas produtivos no meio ambiente.

Adaptado de GARNER, Andy; KEOLEIAN, Gregory A. *Industrial Ecology*: an introduction. Universidade de Michigan. 1995.

Matemática

(2 questões)

1. Um fluido entra em um tubo poroso que mede 45 cm $\left(x=45 \ cm\right)$, conforme **Figura 1**; este tubo é tampado na extremidade, jorrando por suas paredes o fluido, através de orifícios, de maneira que o perfil de velocidade nos orifícios é dado por uma Função do 1º Grau $\left[V(x)=ax+b\right]$. Se em x=0 cm do tubo o fluido jorra a velocidade de 3,6 cm/s e na extremidade do tubo a velocidade é zero, determine a função que descreve o perfil de velocidade do fluido nos orifícios e a velocidade a 15 cm da entrada do tubo.

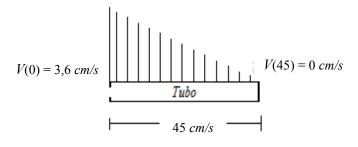


Figura 1

2. Determine a equação da circunferência que representa a forma de uma embalagem de produto alimentício. Esta circunferência passa pela origem do plano cartesiano e tem centro no ponto (2, 4).

Formulário de Matemática

Volume do prisma	$V=S_h h$, onde S_h é a área da base e h é a altura				
Volume do cilindro	$V=S_b h$, onde S_b é a área da base e h é a altura				
Volume da pirâmide	$V = \frac{S_b h}{3}$, onde S_b é a área da base e h é a altura				
Volume do cone	$V = \frac{S_b h}{3}$, onde S_b é a área da base e h é a altura				
Volume do tronco de cone	$V = \frac{\pi h}{3} (R^2 + rR + r^2)$				
Volume da esfera	$V = \frac{4\pi r^3}{3}$ $V = l^3$				
Volume do cubo	$V = l^3$				
Área da superfície esférica	$A = 4\pi r^2$				
Área do círculo	$A = \pi r^2$				
Área lateral do cilindro	$A = 2\pi r h$				
Área do trapézio	$A = \frac{(B+b)h}{2}$				
Área do setor circular	$A = \frac{(B+b)h}{2}$ $A = \frac{\theta r^2}{2}, \text{com } \theta \text{ em radianos}$				
Comprimento de Arco	l=r heta , com $ heta$ em radianos				
Excentricidade	$e = \frac{c}{a}$				
Mudança de base logarítmica	$\log_a x = \frac{\log_b x}{\log_b a}$				
Termo geral da progressão aritmética	$a_n = a_1 + (n-1)r$				
Termo geral da progressão geométrica	$a_n = a_1 q^{n-1}$				
Soma de <i>n</i> termos da progressão aritmética	$S_n = \frac{(a_1 + a_n)n}{2}$				
Soma de <i>n</i> termos da progressão geométrica	$S_n = \frac{a_1(q^n - 1)}{q - 1}, \text{ com } q \neq 1$				
Soma dos infinitos termos da progressão geométrica	$S = \frac{a_1}{1 - q}, \text{ com } q < 1$				
Termo geral do Binômio de Newton	$T_{p+1} = \binom{n}{p} x^p a^{n-p}$				
$\cos(x+y) = \cos x \cos y - \sin y \sin x$	sen(x+y) = sen x cos y + sen y cos x				
Lei dos senos	$\frac{\operatorname{sen} \hat{A}}{a} = \frac{\operatorname{sen} \hat{B}}{b} = \frac{\operatorname{sen} \hat{C}}{c}$				
Lei dos cossenos	$a^2 = b^2 + c^2 - 2bc(\cos A)$				
Análise Combinatória	$\frac{a}{a} = \frac{b}{b} = \frac{c}{c}$ $a^2 = b^2 + c^2 - 2bc\left(\cos \hat{A}\right)$ $P_n = n! \qquad C_{n,p} = \frac{n!}{p!(n-p)!} \qquad A_{n,p} = \frac{n!}{(n-p)!}$				

Relação entre cordas	$\overline{AC}^2 = \overline{CB}.\overline{CH}$
	\overline{PA} . $\overline{PB} = \overline{PC}$. \overline{PD}
	$\overline{AH}^2 = \overline{BH}.\overline{CH}$
	$\overline{PA}^2 = \overline{PB}.\overline{PC}$

	0^0	30^{0}	45 ⁰	60^{0}	90^{0}
Seno	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{}$	$\frac{\sqrt{3}}{}$	1
	U	2	2	2	
Cosseno	1	$\sqrt{3}$	$\sqrt{2}$	<u>1</u>	0
	1	2	2	2	U
Tangente	_	$\sqrt{3}$	_		
	0	3	1	$\sqrt{3}$	

CA	CO	CO
$\cos \theta = \frac{\Pi}{H}$	sen $\theta = \frac{\Pi}{H}$	$\tan \theta = \frac{1}{CA}$

CA = Cateto Adjacente CO = Cateto Oposto H = Hipotenusa

Título:
01.
10.
Rascunho
Podooõo
Redação
20.
30.

Página em Branco. (rascunho)