

Vestibular Vocacionado 2010.2

Caderno de Prova

2ª FASE – 2ª Etapa

CIÊNCIAS DA COMPUTAÇÃO

Nome do Candidato: _	

INSTRUÇÕES GERAIS

- Confira o Caderno de Prova, as Folhas de Respostas e a Folha de Redação. Em caso de erro, comunique-se com o fiscal.
- Utilize somente caneta esferográfica transparente com tinta na cor azul ou preta.
- Não assine as Folhas de Respostas e a de Redação, pois isso identifica o candidato, tendo como consequência a anulação da prova.

PROVA DISCURSIVA

■ Responda às questões discursivas. Se desejar, utilize para cada uma o espaço de rascunho correspondente; no entanto, suas questões deverão ser transcritas para as Folhas de Respostas definitivas observando a numeração correspondente a cada questão.

Ciências da Computação

Matemática

(1 questão)

3. Seja
$$f: N - \{0, 1, 2, 3\} \rightarrow \mathfrak{R}$$
 a função definida
por $f(n) = \frac{n!}{(n+1)(n-3)!} \cdot \frac{(n+1)!}{(n-1)!} - 16 \frac{n!}{n(n-3)!}$.

O valor que satisfaz a equação f(n)=0 corresponde à abscissa do vértice de uma parábola. Sabe-se ainda que esta parábola passa pela origem do sistema de coordenadas cartesianas e que a abscissa do vértice é igual ao dobro da sua ordenada. Obtenha a equação desta parábola, explicitando todos os cálculos.

Física (3 questões)

4. Dois blocos de massas M=8,0 kg e m=2,0 kg, ligados entre si por um fio inextensível, estão em repouso sobre um plano inclinado de um ângulo $\theta=30^{\circ}$. O conjunto encontra-se preso por um fio também inextensível, que passa sobre uma roldana e está fixo a uma parede, conforme a **Figura 1**. Não existe atrito entre os blocos e a superfície do plano inclinado.

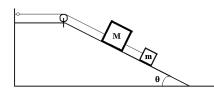


Figura 1

θ	sen θ	$\cos \theta$
30°	0,5	0,9
60°	0,9	0,5

Em relação ao contexto:

- a. Qual a tensão existente no fio que liga o bloco de massa \boldsymbol{M} à parede?
- b. Qual a tensão existente no fio que liga os blocos entre si?
- c. Calcule a aceleração adquirida pelo conjunto de blocos se o fio for cortado logo abaixo da roldana.

5. Uma mola de massa desprezível e constante elástica 5,0 N/m tem elongação x_0 , quando suspensa em equilíbrio no ar. Ao suspender um bloco de massa M no ar, sua elongação passa a ser x_1 ; e ao suspender o mesmo bloco completamente mergulhado em água, sua elongação passa a ser x_2 , conforme ilustrado na **Figura 2**.

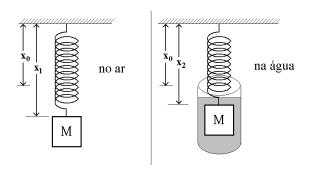


Figura 2

Em relação ao contexto:

- a. Encontre uma expressão para o empuxo que atua sobre o bloco, em termos das elongações da mola mostradas na **Figura 2**.
- b. Quando a mola suspende um bloco no ar, sua elongação aumenta em 10,0 cm; neste caso, qual a massa deste bloco?
- c. Sabendo que o empuxo que atua sobre um bloco de 900 g é de 8,0 N, que variação ocorre na elongação da mola quando o bloco é mergulhado na água?

Ciências da Computação

6. Uma partícula de massa m, carga elétrica positiva q, em movimento retilíneo uniforme com velocidade v, atravessa uma região onde há um campo elétrico uniforme de intensidade E e

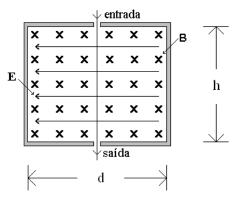


Figura 3

O campo magnético tem direção perpendicular ao plano do papel, e sentido entrando no papel. O campo elétrico é perpendicular ao campo magnético, tem direção paralela ao papel e sentido para a esquerda, conforme a **Figura 3**.

Em relação ao contexto:

- a. Qual a velocidade da partícula na saída e qual a relação entre as intensidades dos campos elétrico e magnético?
- b. Qual seria o vetor aceleração da partícula na região mostrada na **Figura 3**, se o campo magnético fosse nulo?
- c. Esboce como seriam a trajetória e o vetor aceleração da partícula na região mostrada na **Figura 3**, se o campo elétrico fosse nulo.

Formulário de Matemática

Volume do prisma	$V=S_b h$, onde S_b é a área da base e h é a altura
Volume do cilindro	$V=S_bh$, onde S_b é a área da base e h é a altura
Volume da pirâmide	$V=rac{S_b h}{3}$, onde S_b é a área da base e h é a altura
Volume do cone	$V = \frac{S_b h}{3}$, onde S_b é a área da base e h é a altura
Volume do tronco de cone	$V = \frac{\pi h}{3} (R^2 + rR + r^2)$
Volume da esfera	$V = \frac{4\pi \cdot r^3}{3}$ $V = l^3$
Volume do cubo	$V = l^3$
Área da superfície esférica	$A = 4\pi r^2$
Área do círculo	$A = \pi r^2$
Área lateral do cilindro	$A = 2\pi r h$
Área do trapézio	$A = \frac{(B+b)h}{2}$
Área do setor circular	$A = \frac{(B+b)h}{2}$ $A = \frac{\theta r^2}{2}, \text{com } \theta \text{ em radianos}$
Comprimento de Arco	l=r heta , com $ heta$ em radianos
Excentricidade	$e = \frac{c}{a}$
Mudança de base logarítmica	$\log_a x = \frac{\log_b x}{\log_b a}$
Termo geral da progressão aritmética	$a_n = a_1 + (n-1)r$
Termo geral da progressão geométrica	$a_n = a_1 q^{n-1}$
Soma de <i>n</i> termos da progressão aritmética	$S_n = \frac{(a_1 + a_n)n}{2}$
Soma de <i>n</i> termos da progressão geométrica	$S_n = \frac{a_1(q^n - 1)}{q - 1}, \text{ com } q \neq 1$
Soma dos infinitos termos da progressão geométrica	$S = \frac{a_1}{1 - q}, \text{ com } q < 1$
Termo geral do Binômio de Newton	$T_{p+1} = \binom{n}{p} x^p a^{n-p}$
$\cos(x+y) = \cos x \cos y - \sin y \sin x$	sen(x+y) = sen x cos y + sen y cos x
Lei dos senos	$\operatorname{sen} \hat{A} = \operatorname{sen} \hat{B} = \operatorname{sen} \hat{C}$
Lei dos cossenos	$a^2 = b^2 + c^2 - 2bc(\cos \hat{A})$
Análise Combinatória	$\frac{a}{a} = \frac{b}{b} = \frac{c}{c}$ $a^2 = b^2 + c^2 - 2bc\left(\cos \hat{A}\right)$ $P_n = n! \qquad C_{n,p} = \frac{n!}{p!(n-p)!} \qquad A_{n,p} = \frac{n!}{(n-p)!}$

Relação entre cordas	$\overline{AC}^2 = \overline{CB}.\overline{CH}$
	\overline{PA} . $\overline{PB} = \overline{PC}$. \overline{PD}
	$\overline{AH}^2 = \overline{BH}.\overline{CH}$
	$\overline{PA}^2 = \overline{PB}.\overline{PC}$

	0_0	30^{0}	45 ⁰	60^{0}	90^{0}
Seno	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
Cosseno	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
Tangente	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	

CA	CO	СО
$\cos \theta = \frac{\Pi}{H}$	$sen \theta = {H}$	$\tan \theta = \frac{1}{CA}$

CA = Cateto Adjacente CO = Cateto Oposto H = Hipotenusa

Formulário de Física

$x = x_0 + v_0 t + \frac{1}{2} a t^2$	$v = v_o + at$	$v^2 = v_o^2 + 2a\Delta x$	$I = \frac{P}{A}$
$x = x_0 + (v_0 \cos \theta)t$	$y = y_0 + (v_0 \operatorname{sen}\theta)t - \frac{1}{2}gt^2$	$\omega = \frac{\Delta \theta}{\Delta t}$	$f = \frac{1}{T}$
$\omega = \frac{2\pi}{T}$	$v = \omega r$	$\Delta x = R\Delta\theta$	$a_{c} = \frac{v^{2}}{R}$
F = ma	$T = 2\pi \sqrt{\frac{L}{g}}$	F = kx	I = FΔt
P = mg	$\tau = Fd\cos\theta$	Q = mv	$p = p_o + dgh$
$I = \Delta Q$	E = mgh	$E = \frac{1}{2}mv^2$	$P = \frac{F}{A}$
$P = \frac{\Delta E}{\Delta t}$	$E = \frac{1}{2}kx^2$	$\Delta U = Q - W$	$F = \mu F_N$
$Q = mc\Delta T$	Q = mL	$W = p\Delta V$	$E = \frac{F}{q}$
$V = K.\frac{Q}{d}$	$E_p = q.V$	pV = nRT	$T(K) = 273 + T(^{\circ}C)$
$V = K \cdot \frac{Q}{d}$ $F = K \cdot \frac{Q_1 Q_2}{d^2}$	$d = \frac{m}{V}$	$W = -\Delta E_p$	E = dVg
P = Ui	U = Ri	$i = \frac{\Delta Q}{\Delta t}$	$R = \rho \frac{L}{A}$
$R_S = R_1 + R_2 + R_3 + \dots$	$\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$	$F = qvBsen\theta$	$\varepsilon = Blv$
$\frac{1}{C_{s}} = \frac{1}{C_{1}} + \frac{1}{C_{2}} + \frac{1}{C_{3}} + \dots$	$C_p = C_1 + C_2 + C_3 + \dots$	$B = \frac{\mu_o i}{2\pi d}$	$\Phi_{\rm B} = {\rm BA.cos}\theta$
$\frac{1}{f} = \frac{1}{p} + \frac{1}{p'}$	$\frac{y'}{y} = -\frac{p'}{p}$	$\frac{\mathbf{n}_1}{\mathbf{p}} = \frac{\mathbf{n}_2}{\mathbf{p'}}$	$\frac{\operatorname{sen}(\theta_1)}{\operatorname{sen}(\theta_2)} = \frac{n_2}{n_1}$
$L = L_o(1 + \alpha.\Delta T)$	$A = A_o (1 + \gamma . \Delta T)$	$L = n \frac{\lambda}{2}$; $n = 1,2,3,$	$v = \lambda.f$
$\mu_0 = 4\pi \cdot 10^{-7} \text{ T} \frac{\text{m}}{\text{A}}$	$V = V_o (1 + \beta.\Delta T)$	$L = n \frac{\lambda}{4}$; $n = 1, 3, 5$	$v = \sqrt{F/\mu}$
$M_{Terra} = 6.0 \times 10^{24} \text{ kg}$	$G = 6.7 \times 10^{-11} \text{ Nm}^2/\text{kg}^2$	$E_{m\acute{e}dia} = \frac{3}{2}kT$	E = hf
$p_0 = 1.0 \times 10^5 \text{ Pa}$	$L_{\rm H_2O} = 80 \text{ cal/g}$	$c_{H_2O} = 1.0 \text{ cal/(g.°C)}$	$c_{gelo} = 0.5 \text{ cal/(g.}^{\circ}\text{C})$
$c = 3.0.10^8 \text{ m/s}$	$g = 10 \text{ m/s}^2$	$d_{H_2O} = 1.0 \times 10^3 \text{ kg/m}^3$	1 cal = 4 J

Página em Branco. (rascunho)

Página em Branco. (rascunho)