

Vestibular Vocacionado 2010.2

Caderno de Prova

2ª FASE – 2ª Etapa

ENGENHARIA MECÂNICA

Nome do Candidato:		

INSTRUÇÕES GERAIS

- Confira o Caderno de Prova, as Folhas de Respostas e a Folha de Redação. Em caso de erro, comunique-se com o fiscal.
- Utilize somente caneta esferográfica transparente com tinta na cor azul ou preta.
- Não assine as Folhas de Respostas e a de Redação, pois isso identifica o candidato, tendo como consequência a anulação da prova.

PROVA DISCURSIVA

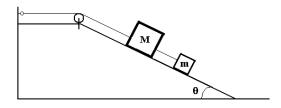
■ Responda às questões discursivas. Se desejar, utilize para cada uma o espaço de rascunho correspondente; no entanto, suas questões deverão ser transcritas para as Folhas de Respostas definitivas observando a numeração correspondente a cada questão.

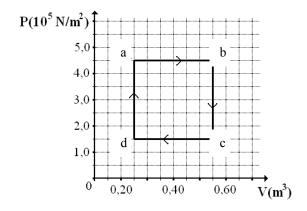
Engenharia Mecânica

Física

(2 questões)

3. Dois blocos de massas M=8.0 kg e m=2.0 kg, ligados entre si por um fio inextensível, estão em repouso sobre um plano inclinado de um ângulo $\theta=30^{\circ}$. O conjunto encontra-se preso por um fio também inextensível, que passa sobre uma roldana e está fixo a uma parede, conforme a **Figura 1**. Não existe atrito entre os blocos e a superfície do plano inclinado.




Figura 1

θ	sen θ	$\cos \theta$
30°	0,5	0,9
60°	0,9	0,5

Em relação ao contexto:

- a. Qual a tensão existente no fio que liga o bloco de massa M à parede?
- b. Qual a tensão existente no fio que liga os blocos entre si?
- c. Calcule a aceleração adquirida pelo conjunto de blocos se o fio for cortado logo abaixo da roldana.

4. Uma máquina térmica, cujo fluido de trabalho é um gás, executa o ciclo termodinâmico reversível representado no gráfico abaixo.

- a. Sabendo que a máquina opera com uma frequência de 5,0 Hz, quantos ciclos são necessários para produzir 1,0 kWh?
- b. Qual a variação da pressão experimentada pelo gás, durante a transformação entre os estados a e c?
- c. Em quais transformações o gás recebe ou cede calor?

Engenharia Mecânica

Química

(2 questões)

- **5.** Uma concentração de 0,40 % de CO no ar (em porcentagem volumétrica) produz a morte de um indivíduo em um tempo relativamente curto. O motor desajustado de um carro pode produzir 0,67 mol de CO por minuto. Se o carro ficar ligado em uma garagem fechada, com volume de 4,1 x 10⁴ litros, a 27 ° C, em quanto tempo a concentração de CO atingirá o valor mortal? Suponha que a pressão total se mantenha constante, com valor de 1,0 atm, e que a concentração de CO inicial no ar seja nula.
- **6.** Glicose e frutose são açúcares simples com a fórmula molecular $C_6H_{12}O_6$. A sacarose, ou açúcar de mesa, é um açúcar complexo que tem a fórmula $C_{12}H_{22}O_{11}$. A sacarose consiste em uma unidade de glicose ligada de forma covalente a uma unidade de frutose (uma molécula de água é liberada na reação entre a glicose e a frutose para formar sacarose). A queima da sacarose pode ser descrita pela equação química (não balanceada):

- a. Calcule a energia liberada, na forma de calor, quando um tablete de açúcar de mesa, com massa igual a 1,5 g, é queimado no ar.
- b. A que altura um homem de 65 kg poderia subir com a energia liberada pelo tablete de açúcar, supondo que 25 % da energia esteja disponível para efetuar trabalho?

Formulário e Dados de Química

$$Q = m.c.\Delta T$$

 $PV = nRT$
 $P_i = x_i.P$
 $W = m.g.h$
1 cal = 4,18 J.
1 atm = 760 mmHg
R = 0,082 atm.L/mol.K

Potenciais padrões de redução:

Entalpias padrão de formação a 25ºC

Entalpias padrao de formação a
$$25^{\text{M}}$$
 $\Delta H^0_{f, \, \text{água} \, (\text{I})} = -286 \, \text{kJ/mol}$ $\Delta H^0_{f, \, \text{água} \, (\text{g})} = -242,0 \, \text{kJ/mol}$ $\Delta H^0_{f, \, \text{hidróxido de cálcio} \, (\text{s})} = -986 \, \text{kJ/mol}$ $\Delta H^0_{f, \, \text{gás carbônico} \, (\text{g})} = -394,0 \, \text{kJ/mol}$ $\Delta H^0_{f, \, \text{carbonato de cálcio} \, (\text{s})} = -1207 \, \text{kJ/mol}$ $\Delta H^0_{f, \, \text{glicose}, \, \alpha\text{-D} \, (\text{s})} = -1274 \, \text{kJ/mol}$ $\Delta H^0_{f, \, \text{sacarose} \, (\text{s})} = -2222 \, \text{kJ/mol}$

1 IA	~													18 0			
H	2													17	He		
1,01	IIA												VIIA	4,00			
Li Li	⁴ Be	$\begin{vmatrix} 5 & 6 & 7 & 8 & 0 \end{vmatrix}$										F	Ne				
6,94	9,01												19,0	20,2			
11	12	Elementos de transição 13 14 15 16 17										17	18				
Na	Mg	3	4	5	6	7	8	9	10	11	12	Al	Si	P	S	CI	Ar
23,0	24,3	IIIB	IVB	VB	VIB	VIIB		- VIIIB -	$\overline{}$	IB	IIB	27,0	28,1	31,0	32,0	35,5	39,9
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39,1	40,1	45,0	47,9	50,9	52,0	54,9	55,8	58,9	58,7	63,5	65,4	69,7	72,6	74,9	79,0	79,9	83,8
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	ln	Sn	Sb	Te		Xe
85,5	87,6	88,9	91,2	92,9	95,9	(99)	101	103	106	108	112	115	119	122	128	127	131
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ва	Série dos Lan-	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
133	137	tanídios	178	181	184	186	190	192	195	197	201	204	207	209	(209)	(210)	(222)
87	88	89-103		105	106	107	108	109									
Fr	Ra	Série dos Ac-	Rf	Db	Sg	Bh	Hs	Mt									
(223)	(226)	tinídios	(261)	(262)	(263)	(262)	(265)	(266)]								

Séries (los Lantaníd	ios												
57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
138	140	141	144	(147)	150	152	157	159	163	165	167	169	173	175

Séries dos Actinídios 90 92 96 99 91 93 94 95 98 100 101 102 103 Pa U Pu Cm Bk Cf Es Fm Md No Ac Th Np Am Lr (243) (247) (247) (258) (253) (227) (257)

(A numeração dos grupos 1 a 18 é a recomendada atualmente pela IUPAC)

Formulário de Física

$x = x_o + v_o t + \frac{1}{2} a t^2$	$v = v_o + at$	$v^2 = v_o^2 + 2a\Delta x$	$I = \frac{P}{A}$
$x = x_0 + (v_0 \cos \theta)t$	$y = y_0 + (v_0 \operatorname{sen}\theta)t - \frac{1}{2}gt^2$	$\omega = \frac{\Delta \theta}{\Delta t}$	$I = \frac{P}{A}$ $f = \frac{1}{T}$
$\omega = \frac{2\pi}{T}$	$v = \omega r$	$\Delta x = R\Delta\theta$	$a_{c} = \frac{v^{2}}{R}$
F = ma	$T = 2\pi \sqrt{\frac{L}{g}}$	F = kx	I = FΔt
P = mg	$\tau = Fd\cos\theta$	Q = mv	$p = p_o + dgh$
$I = \Delta Q$	E = mgh	$E = \frac{1}{2} mv^2$	$P = \frac{F}{A}$
$P = \frac{\Delta E}{\Delta t}$	$E = \frac{1}{2}kx^2$	$\Delta U = Q - W$	$F = \mu F_N$
Q = mcΔT	Q = mL	$W = p\Delta V$	$E = \frac{F}{q}$
$V = K.\frac{Q}{d}$	$E_p = q.V$	pV = nRT	$T(K) = 273 + T(^{\circ}C)$
$F = K \frac{Q_1 Q_2}{d^2}$	$d = \frac{m}{V}$	$W = -\Delta E_p$	E = dVg
P = Ui	U = Ri	$i = \frac{\Delta Q}{\Delta t}$	$R = \rho \frac{L}{A}$
$R_S = R_1 + R_2 + R_3 + \dots$	$\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$	$F = qvBsen\theta$	$\varepsilon = Blv$
$\frac{1}{C_s} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots$	$C_P = C_1 + C_2 + C_3 + \dots$	$B = \frac{\mu_o i}{2\pi d}$	$\Phi_{\rm B} = {\rm BA.cos}\theta$
$\frac{1}{f} = \frac{1}{p} + \frac{1}{p'}$	$\frac{y'}{y} = -\frac{p'}{p}$	$\frac{\mathbf{n}_1}{\mathbf{p}} = \frac{\mathbf{n}_2}{\mathbf{p}'}$	$\frac{\operatorname{sen}(\theta_1)}{\operatorname{sen}(\theta_2)} = \frac{n_2}{n_1}$
$L = L_o(1 + \alpha.\Delta T)$	$A = A_o (1 + \gamma . \Delta T)$	$L = n \frac{\lambda}{2}$; $n = 1,2,3,$	$v = \lambda.f$
$\mu_0 = 4\pi \cdot 10^{-7} \text{ T} \frac{\text{m}}{\text{A}}$	$V = V_o (1 + \beta.\Delta T)$	$L = n \frac{\lambda}{4}$; $n = 1, 3, 5$	$v = \sqrt{F/\mu}$
$M_{Terra} = 6.0 \times 10^{24} \text{ kg}$	$G = 6.7 \times 10^{-11} \text{ Nm}^2/\text{kg}^2$	$E_{\text{média}} = \frac{3}{2}kT$	E = hf
$p_0 = 1.0 \times 10^5 \text{ Pa}$	$L_{\rm H_2O} = 80 \text{ cal/g}$	$c_{H_2O} = 1.0 \text{ cal/(g.°C)}$	$c_{gelo} = 0.5 \text{ cal/(g.}^{\circ}\text{C})$
$c = 3.0.10^8 \text{ m/s}$	$g = 10 \text{ m/s}^2$	$d_{\rm H_2O} = 1.0 \times 10^3 \text{ kg/m}^3$	1 cal = 4 J

Página em Branco. (rascunho)